JavaScripting
	Submit a Library
	Follow Us

The definitive source of the best
JavaScript libraries, frameworks, and plugins.
 ▶

	All Items
	Animation
	▶Application Tools	Frameworks
	Loaders
	Templating
	Utilities

	Audio
	Development Aids
	▶Dom	Frameworks
	Utilities

	Forms
	Games
	▶Helpers	Cross Browser
	Object Extends

	▶Images	Sliders and Displays
	2D Graphics
	3D Graphics

	Data
	Mobile and Touch
	Typography
	User Interface
	Video
	Miscellaneous

From our blog

	

×Pdf Object
HomepageGithub

A lightweight JavaScript utility for dynamically embedding PDFs in HTML documents.
Filed under user interface

	🔾62%Overall
	★2,289
	⏳14 days
	🕩992
	👥5

	About
	Repository

PDFObject

A lightweight JavaScript utility for dynamically embedding PDFs in HTML documents.

Examples and documentation can be found at https://pdfobject.com.

A PDFObject component for Vue.js 3 can be found at https://github.com/pipwerks/pdfobject-vue/

Copyright (c) 2008-2024 Philip Hutchison

MIT-style license: http://pipwerks.mit-license.org/

Changelog

2.3 (February 2024)

	Removed <embed> in favor of <iframe>. PDFObject had previously defaulted to an <embed> element, but over time it has become apparent the superior solution is <iframe>. It's universally supported, and does not suffer from <embed>'s odd quirks and spotty support. This should make PDFObject more consistent and robust across platforms.
	As a result of removing <embed> and redefining the detection logic, some PDFObject options have become obsolete. They are safe to keep in your code (will not throw errors), but are no longer used by PDFObject. The deprecated options are: assumptionMode, forceIframe, and supportRedirect.
	Incorporated support for navigator.pdfViewerEnabled, per #290. As of Spring 2023, navigator.pdfViewerEnabled is supported in all major browsers. This naturally led to redefining PDFObject's PDF support detection logic. 	If the browser is on a mobile device, PDFObject will automatically assume PDFs are not supported (as of February 2024, no mobile browsers properly support inline PDFs).
	If not a mobile device, PDFObject will check navigator.pdfViewerEnabled.
	If the feature is found, but disabled (e.g. the user has intentionally disabled PDF support in the browser), PDFObject will respect this and behave as if inline PDFs are not supported.
	If navigator.pdfViewerEnabled is found and set to true, PDFObject will embed the PDF.
	If navigator.pdfViewerEnabled is not found, fallback logic will kick in and check what kind of browser is being used.
	If the browser is known to support inline PDFs natively (Chrome/Edge/Opera/etc, macOS Safari, Firefox), PDFObject will assume inline PDFs are supported and embed the file.
	If Internet Explorer, PDFObject will query against ActiveX for known PDF plugins (Acrobat, FoxIt) and act accordingly.

	Added support for converting base64 PDFs (string) to a downloadable file, per #243 and #270. This only impacts fallback content on browsers that don't support inline PDFs.
	Improved handling of PDF Open Parameters. Ensures proper sequencing of parameters in URL string, per Adobe spec. Ensures page is always set if comment, viewrect or highlight are specified.

2.2.12, June 2023

Refactored one line of code to restore IE11 compatibility, per #287.

2.2.11, May 2023

Typo in version number within PDFObject code. Yup, I'm a bit rusty.

2.2.10, May 2023

Version bump for cleaning up docs and aligning on NPM. I'm a bit rusty.

2.2.9, May 2023

	Fixed regression for pdfOpenParams handling, resolves issue #272. Hat tip to Theo Beers.
	Added ability to specify custom attribute on embed and iframe elements, per #274

2.2.8, April 2022

	Refactored to reduce redundant code. Simplified iframe and PDFJS handling. Subsequently resolves #263 (double scroll bars) and PR #267 (PDFJS_URL param fix). Hat tip to Theo Beers, Sascha Greuel, meier-andersen, and everyone who helped identify and confirm the underlying issues.
	Fixed fallbackLink handling to ensure false is respected. Hat tip to Theo Beers.

2.2.7, September 2021

	Add title attribute to PDFJS iframe elements per #258

2.2.6, July 2021

	Add title attribute to embed and iframe elements per #248
	Force Safari desktop to embed via iframe due to freezing bug in macOS 11 (Big Sur) per #243
	Fixed version number per #247
	Added note about documentation to readme file per #251

2.2.5, March 2021

	Expanded assumptions to counteract Chrome's deprecation of MIME type checks. Any 'modern' browser will be given a green light regardless of whether assumptionMode is enabled. However assumptionMode will still be available for browsers that are not declared modern.
	Added allow="fullscreen" attribute to iframe embeds, in case anyone needs their PDFs to be rendered fullscreen.
	Fixed Firefox user agent sniffing for edge case (thanks to David Novodchuck for the PR)

2.2.4, October 2020

Reinstated typeof check for window to play nice with React and NextJS.

2.2.3, September 2020

Version bump for NPM. Sigh.

2.2.2, September 2020

Fixed typo affecting suppressConsole functionality. Hat tip to John Hunter for the discovery and fix.

2.2.1, September 2020

Fixed typo affecting styling of iframe when forcing PDFJS.

2.2.0, September 2020

	New behavior: Dropping support for IE9 and IE10, which have practically 0 marketshare now.
	New behavior: Now explicitly displaying fallback content for all mobile devices, even "Request Desktop" version of pages in iOS. The reasoning is simple: As of the time of this update, no mobile device (Android, iOS) natively supports embedded PDFs. This change will lead to a consistent experience across all mobile devices. PDFs can be rendered via PDF.js on mobile if embedding on mobile is a critical need. PDF.js is not included with PDFObject.
	New option: Omit inline styles by setting option omitInlineStyles to true. This helps developers who use strict environments where inline styles are not allowed. Note you will be responsible for applying proper styling via your own CSS.
	New option: Suppress console logging by setting option suppressConsole to true. PDFObject currently places error messages in the console if the PDF can't be embedded for some reason. This option allows you to mute those alerts.
	New option: Force PDFObject to embed the PDF in an iframe (instead of an <embed>) by setting forceIframe to true.
	Refactored to use more modern code conventions, such as let in lieu of var, el.classList.add() in place of el.className = 'foo', and myvar === undefined in place of typeof myvar === "undefined". Implemented a let declaration before each variable instead of the Crockford practice of one var per function.
	New option: On macOS systems, Safari does not properly embed PDFs that have been requested via 302 URL redirection when embedding using the <embed> element. Setting supportRedirect to true forces PDFObject to use an <iframe> instead of an <embed> for desktop Safari. Hat tip to John Hunter for the discovery and fix.
	Refactored to make code safer for server-side node.js-based environments.
	Refactored to eliminate string-based element creation via innerHTML. Replaced with standard DOM methods. This helps alleviate unforeseen issues with file names. Only exception is insertion of fallback content, which is passed as a string via innerHTML.
	Removed iframe scrollfix for iOS, as it is no longer needed as of iOS13. iOS 12 and lower have ~5-7% marketshare and shrinking fast.
	Refactored codebase to make it more concise and legible.

2.1.1, October 2018

Improved handling of iOS to properly indicate iOS does not support embedded PDFs.

2.1, October 2018

Changed assumptionMode default from false to true. This will ensure PDFObject 2.x will work for Firefox users without requiring them to change their codebase to enable assumptionMode. All they need to do is load the latest version of PDFObject, the PDFObject utility will take care of the rest.

2.1 (dev branch)

January 2017: Modified to support Mozilla's removal of navigator.mimeTypes inspection. Added assumptionMode for manual override of PDFObject's default navigator.mimeTypes sniffing.

2.0, April 2016

Initial release of PDFObject 2.0. Contains breaking changes, and is not compatible with PDFObject 1.x.

Show All

About our sponsor
Salsita Software is a professional software consulting company specializing in the development of complex, modern web applications and HTML5-based apps. We use agile software development methodologies to deliver sophisticated, reliable, cutting-edge web and mobile apps.
Hire us !

Latest tweets

Follow @javascripting

Conceived by Konstantin. Managed by Salsita © 2014 Salsita Software. All rights reserved.

